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Abstract. We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass
matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry
justification. We propose two alternative methods which allow one to place zeros in any number of elements
of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors.
They are also applicable in grand unified theories. The number of scalar fields required by our methods
may be large; still, in many interesting cases this number can be reduced considerably. The larger the
desired number of texture zeros is, the simpler are the models which reproduce the texture.

1 Introduction

The data from recent neutrino experiments [1–4] confirm
the neutrino oscillation hypothesis [5] and, therefore, con-
firm the hypothesis [6] of neutrinomasses and leptonmixing
– for recent reviews see [7]. While experiments have made
great progress in determining the lepton mixing matrix
and the two neutrino mass-squared differences, the origin
of neutrino masses and lepton mixing is still far from clear,
as witnessed by the many ideas put forward in this context
– see, for instance, [8]. Recently, Abelian symmetries have
been studied systematically in [9] with the aim of achieving
extremal mixing angles. A standard attempt at explaining
the observed masses and mixing angles is provided by “tex-
tures” for the lepton mass matrices, with “texture zeros”,
which have been widely discussed in the literature [10–14].
In particular, it has been found that, in the weak basis
where the charged-lepton mass matrix is diagonal, neu-
trino mass matrices with two texture zeros1 are consistent
with all the experimental data [15]. The neutrino mass
matrix does not seem to display the hierarchical structure
apparent in quark mass matrices [16–20].

The important theoretical problem with texture zeros is
their origin. In this paper, we show that it is possible to en-
force texture zeros in arbitrary entries of the fermion mass
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1 Since we are dealing with Majorana neutrinos, the neutrino

mass matrix Mν is symmetric and (Mν)ab = (Mν)ba = 0 is
counted as only one texture zero when a �= b.

matrices by means of an Abelian symmetry. We suggest two
alternative general possibilities for the Abelian symmetry
group,2 which are simultaneously applicable in both the
quark and lepton sectors, and also in grand unified theories.
They allow one to embed mass-matrix textures with zeros
into renormalizable field theories, at the expense, some-
times, of a proliferation of scalars and flavour-changing
neutral Yukawa interactions.

We explain the general methods in Sect. 2 and illus-
trate them with four examples in Sect. 3. Three examples
are taken from the lepton sector and use the seesaw mecha-
nism [23] to suppress the neutrino masses; the last example
is from the quark sector. It is also shown in Sect. 3 that, in
physically interesting cases, the number of scalars needed
to implement a texture can be reduced considerably rela-
tive to the general methods of Sect. 2; unfortunately, it is
not easy to provide a general way for reducing the number
of scalar multiplets, or to find out the minimal number
of scalars needed in order to implement a given texture.
How to avoid potential Goldstone bosons in our symmetry
realization of texture zeros is the subject theme of Sect. 4.
The conclusions are presented in Sect. 5.

2 The methods

We explain our methods by considering the lepton sector
of the standard model (SM), which has three right-handed
charged-lepton singlets �Ra and three left-handed lepton

2 In the discovery of the first alternative we have been inspired
by the “dimensional deconstruction” [21] model of [22].
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doublets DLa (a = 1, 2, 3); to this we add three right-
handed neutrino singlets νRa, in order to enable the seesaw
mechanism for suppressing the neutrino masses.

2.1 First method

We assume that each of the nine fermion multiplets f
transforms under a separate Abelian group G (f), so that
the full horizontal symmetry group G is the direct product
of nine groups:

G = ×f G (f) , with f = �Ra, DLa, νRa (a = 1, 2, 3). (1)

For mathematical transparency we identify the groups
G (f) with their unitary representations; thus, the G (f)
are groups of complex numbers on the unit circle, either
the discrete groups Zn or the continuous group U(1). We
introduce Higgs doublets φab and φ̃ab (note that in general
the φab and the φ̃ab are independent degrees of freedom),
with weak hypercharges +1/2 and −1/2, respectively, to-
gether with scalar singlets χab with weak hypercharge 0.
They transform in the following way:

φab : G∗ (�Ra) ⊗ G (DLb) ,

φ̃ab : G∗ (νRa) ⊗ G (DLb) ,
χab : G (νRa) ⊗ G (νRb) .

(2)

We make the identification χab ≡ χba, ∀ a, b ∈ {1, 2, 3}, so
that there are only six (in general complex) scalar singlets.
The G-invariant Yukawa Lagrangian of the leptons is

LY� = −
∑
a,b

(
Γab �̄Raφ†

abDLb + ∆ab ν̄Raφ̃†
abDLb

+
1
2

Yab χabν̄RaCν̄T
Rb

)
+ H.c. (3)

There is one coupling constant Γab for each Higgs doublet
φab, one coupling constant ∆ab for each Higgs doublet φ̃ab,
and one coupling constant Yab for each scalar singlet χab.
With the vacuum expectation values (VEVs)

〈0|φab|0〉 =
(

0
vab

)
, 〈0|φ̃ab|0〉 =

(
w∗

ab
0

)
,

〈0 |χab| 0〉 = Xab, (4)

one obtains the charged-lepton mass matrix M�, the neu-
trino Dirac mass matrix MD, and the right-handed neutrino
Majorana mass matrix MR through

(M�)ab = v∗
abΓab, (MD)ab = wab∆ab,

and

(MR)ab = XabYab, (5)

respectively. It is natural to assume that the VEVs Xab of
the scalar singlets are of a very large (seesaw) scale. One
then obtains a suppressed Majorana mass matrix [23]

Mν = −MT
DM−1

R MD (6)

for the light neutrinos.
In this scheme, according to (2)–(5), for each non-zero

entry in M� or MD we need one Higgs doublet, with appro-
priate transformation properties under G, connecting the
two fermion multiplets corresponding to that entry. Sim-
ilarly, for each non-zero matrix element of MR we need a
singlet χab with appropriate transformation properties un-
der G. Under these conditions, it is easy to place a texture
zero in any entry of the mass matrices M�, MD, or MR,
simply by not introducing into the theory the correspond-
ing scalar multiplet. Thus, if we want to have (M�)ab �= 0,
then we allow the presence of φab in the theory; if, on the
contrary, we want (M�)ab to vanish, then we do not admit
the Higgs doublet φab into the set of scalar fields.

For each of the matrices M� and MD we need at most
nine Higgs doublets; in the case of nine Higgs doublets we
obtain the most general mass matrix. For a fully general
MR, which is symmetric, we need six scalar singlets. In
practice, however, in order to obtain predictive mass ma-
trices there will be many zero entries in those matrices,
and the actual number of scalar multiplets will be much
less than 9 + 9 + 6 = 24.

If the horizontal symmetry group corresponding to νRa

is Z2(νRa), thenweobtain anon-zerodiagonal entry (MR)aa

in MR from the automatic presence in the Lagrangian of
the mass term −maν̄RaCν̄T

Ra + H.c., without the need for
a singlet χaa. Thus, if one wants to enforce (MR)aa = 0,
then νRa must not transform as Z2(νRa), rather G(νRa)
has to be genuinely complex.

In order to obtain a non-singular M� we need at least
three non-zero elements in that matrix and, by adequately
interchanging the �Ra, those three non-zeromatrix elements
may be placed along the diagonal of M�. The number of
Higgs doublets φab needed may then be reduced by assum-
ing G (�Ra) ≡ G (DLa) and by using only one φ doublet,
invariant under the horizontal symmetry group, which si-
multaneously generates all three diagonal matrix elements
in M�. A similar trick may be used in MD, and also in MR if
one wants to reduce the number of scalar singlets employed.

If the zeros in M� and MD are at the same places, and if
the Higgs doublets responsible for M� transform under the
same real representation G as those responsible for MD,
then we may identify φ̃ab with iσ2φ

∗
ab; in that case we have

G (�Ra) ≡ G (νRa), G is the direct product of only six groups
G (f), and the number of Higgs doublets needed may be
reduced considerably.

All these points will become clearer after the examples
in Sect. 3.

2.2 Second method

An alternative and much simpler possibility for the Abelian
symmetry group is the general choice

G = Z12 × Z2. (7)

Let ω = exp (iπ/6). Under the Z12 of (7),

�̄R1 → ω �̄R1, ν̄R1 → ω ν̄R1, DL1 → ω DL1,
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�̄R2 → ω2�̄R2, ν̄R2 → ω2ν̄R2, DL2 → ω3DL2, (8)

�̄R3 → ω5�̄R3, ν̄R3 → ω5ν̄R3, DL3 → ω8DL3.

Then, the bilinears �̄RaDLb and ν̄RaDLb, relevant for (M�)ab
and (MD)ab, respectively, transform according to the ma-
trix 

ω2 ω4 ω9

ω3 ω5 ω10

ω6 ω8 ω


 , (9)

while the bilinears ν̄RaCν̄T
Rb, relevant for (MR)ab, transform

according to 
ω2 ω3 ω6

ω3 ω4 ω7

ω6 ω7 ω10


 . (10)

Since all the powers of ω in the matrix of (10) are different,
we may introduce into the theory singlets χab with the
appropriate transformation properties under Z12 in order to
render non-zero only those matrix elements of MR that one
wants; notice that no bilinear ν̄RaCν̄T

Rb is G-invariant, and
therefore χab is always needed in order to obtain (MR)ab �=
0. Similarly, all powers of ω in the matrix of (9) are different,
and therefore one needs a separate φab or φ̃ab in order to
make each matrix element (M�)ab or (MD)ab, respectively,
non-zero.

The factor group Z2 in (7) is needed in order to distin-
guish the φab from the φ̃ab, so that some Higgs doublets
do not simultaneously generate non-zero matrix elements
in M� and in MD. Under that Z2 the φ̃ab and the neu-
trino singlets νRa change sign, while all other multiplets
remain invariant.

Variations on this second method are, of course, pos-
sible. One may modify the transformation properties of
the DLa by a fixed power of ω, for instance. Or one may
substitute Z12 by a U(1) group, by trading the ωq in (8) by
eiqα, with α a continuous real parameter. Most important,
in the realization of many specific textures one may trade
the symmetry Z12 × Z2 by a smaller symmetry; we will
encounter examples with Z8 in the following section.

3 Examples

We have borrowed the first two examples from [24], where
they are called cases b2 and a1, respectively; they reproduce
the texture A2 of [15] for Mν :

Mν ∼

 0 × 0

× × ×
0 × ×


 , (11)

where the crosses represent non-zero matrix elements. In
both examples M� is diagonal, hence we may identify the
indices 1, 2, 3 with e, µ, τ , respectively.

Example A

We have

M� and MD diagonal, MR ∼

 0 × ×

× 0 0
× 0 ×


 . (12)

This is a particularly simple case since M� and MD are
simultaneously diagonal. Using the first method of the pre-
vious section, this allows for the identification G (�Ra) ≡
G (νRa) ≡ G (DLa), so that G is the direct product of only
three groups. One Higgs doublet φ transforming trivially
under G, together with φ̃ = iσ2φ

∗, are sufficient for gener-
ating both M� and MD. Since (MR)11 = (MR)22 = 0, we
take G (νR1) ≡ Z4 (νR1) and G (νR2) ≡ Z4 (νR2); for G (νR3)
we use G (νR3) ≡ Z2 (νR3) so that (MR)33 is non-zero even
in the absence of any scalar singlets. We need two scalar
singlets, transforming as

χ12 : Z4 (νR1) ⊗ Z4 (νR2) ,
χ13 : Z4 (νR1) ⊗ Z2 (νR3) .

(13)

Thus, in this example there is only the SM Higgs doublet,
together with two complex scalar singlets which at low
energies are invisible.

Example B

We have

M� diagonal, MD ∼

× 0 ×

0 0 ×
0 × 0


 ,

MR ∼

× 0 ×

0 × 0
× 0 0


 . (14)

Firstly, we discuss a straightforward realization of this tex-
ture, using the first method of Sect. 2. Since M� is diag-
onal, we choose G (�Ra) ≡ G (DLa), and G is the direct
product of only six groups. In order to obtain the diago-
nal M�, it is then sufficient to introduce one Higgs dou-
blet φ, transforming trivially under G. We further choose
G (DLa) = Z2 (DLa), ∀ a = 1, 2, 3. Since MR has one zero in
the diagonal, we take a genuinely complex group for all the
νRa, viz. G (νRa) = Z4 (νRa). There are four non-zero en-
tries in MD, therefore we need (besides φ) four more Higgs
doublets, with the following transformation properties:

φ̃11 : Z∗
4 (νR1) ⊗ Z2 (DL1) ,

φ̃13 : Z∗
4 (νR1) ⊗ Z2 (DL3) ,

φ̃23 : Z∗
4 (νR2) ⊗ Z2 (DL3) ,

φ̃32 : Z∗
4 (νR3) ⊗ Z2 (DL2) .

(15)

It remains to discuss the scalar singlets:

χ11 : Z4 (νR1) ⊗ Z4 (νR1) ,
χ22 : Z4 (νR2) ⊗ Z4 (νR2) ,
χ13 : Z4 (νR1) ⊗ Z4 (νR3) .

(16)
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There are five Higgs doublets and three scalar singlets in
this straightforward realization of the texture.

Secondly, one may try, still using the first method
of Sect. 2, to reduce the number of scalars. We stick to
G (�Ra) ≡ G (DLa) and use for G the direct product of five
groups instead of six:

Z2 (DL1) ≡ Z2 (�R1) ,
Z4 (DL2) ≡ Z4 (�R2) ≡ Z4 (νR3) ,
Z2 (DL3) ≡ Z2 (�R3) ,
Z2 (νR1) ,
Z2 (νR2) .

(17)

As before, we introduce a Higgs doublet φ transforming
trivially under G. Then the coupling of φ̃ = iσ2φ

∗ is re-
sponsible for (MD)32 �= 0. For the three remaining non-zero
elements of MD we need the following Higgs doublets:

φ̃11 : Z2 (νR1) ⊗ Z2 (DL1) ,

φ̃13 : Z2 (νR1) ⊗ Z2 (DL3) ,

φ̃23 : Z2 (νR2) ⊗ Z2 (DL3) .

(18)

Now one scalar singlet χ13 transforming as Z2 (νR1) ⊗
Z4 (νR3) is sufficient. Thus, in this realization of the texture
of (14) we manage to have only four Higgs doublets and
one scalar singlet, while G is the direct product of four Z2
and one Z4 groups.

Thirdly, we note that there are even more economic
realizations of the present texture, when one uses the second
method of the previous section, or a simplified version
thereof. Consider for instance the following Z8 symmetry:

�̄R2 → ζ�̄R2, ν̄R2 → ζ6ν̄R2, DL2 → ζ7DL2,
�̄R3 → ζ4�̄R3, ν̄R3 → ζ3ν̄R3, DL3 → ζ2DL3,

(19)

where ζ = exp (iπ/4).We thenneedonly twoHiggs doublets
φ and φ′, one complex scalar singlet χ, and one real scalar
singlet χ′, transforming as

φ → φ,
φ′ → ζ6φ′,
χ → ζ5χ,
χ′ → ζ4χ′.

(20)

The Yukawa couplings matrices of φ, φ′, φ̃ = iσ2φ
∗, and

φ̃′ = iσ2φ
′∗ are given by

Γ ∼

× 0 0

0 × 0
0 0 0


 , Γ ′ ∼


0 0 0

0 0 0
0 0 ×


 ,

∆ ∼

× 0 0

0 0 ×
0 0 0


 , ∆′ ∼


0 0 ×

0 0 0
0 × 0


 , (21)

respectively. While the non-zero entry (MR)11 in the mass
matrix of the right-handed neutrino singlets does not need
a scalar singlet, the rest of the entries in MR of (14) is
supplied by the Yukawa coupling matrices

Y ∼

 0 0 ×

0 0 0
× 0 0


 and Y ′ ∼


0 0 0

0 × 0
0 0 0


 (22)

of χ and χ′, respectively.
Our second and third realizations of the texture in (14)

illustrate the fact that the methods presented in Sect. 2
do not necessarily lead to the simplest Abelian symmetry
which justifies each texture, nor to the minimal number
of scalar multiplets or fields. For some textures it may be
possible to find simpler symmetries than the ones presented
in Sect. 2, and realizations of the texturewhich require fewer
scalar multiplets.

Example C

We have

M� ∼

 0 × 0

× 0 ×
0 × ×


 ,

MD ∼

 0 × 0

× 0 ×
0 × ×


 , MR diagonal. (23)

We have borrowed this example from [25] (see also [26]),
where it is moreover assumed that the diagonal elements of
MR are all equal; unfortunately, the latter feature cannot
be implemented with the methods proposed in the present
paper. In M� and MD the position of the zeros is the same;
using the first method in Sect. 2, this makes it convenient
to choose G (�Ra) ≡ G (νRa). We set G (νRa) = Z2 (νRa),
an option which automatically yields a mass matrix MR
with non-zero diagonal elements, without the need for any
scalar singlets. We choose G as being the direct product of
four Z2 groups:

Z2 (DL1) ≡ Z2 (�R2) ≡ Z2 (νR2) , (24)

Z2 (DL2) ≡ Z2 (�R1) ≡ Z2 (νR1) , (25)

Z2 (�R3) ≡ Z2 (νR3) , (26)

Z2 (DL3) . (27)

Then we need four Higgs doublets: φ12 ≡ φ21, which is
invariant under G; φ33, which changes sign under the Z2
groups in (26) and (27); φ23, which changes sign under
the Z2 groups in (24) and (27); and φ32, which changes
sign under the Z2 groups in (25) and (26). For all these
Higgs doublets we need to consider the Yukawa couplings
of both the φab and the φ̃ab = iσ2φ

∗
ab. Thus, we reproduce

the texture in (23) by using a horizontal symmetry group
G which is the direct product of four Z2 groups, with a
scalar sector consisting of four Higgs doublets.

Lastly, we consider an example from the quark sector.
In that sector, the quark doublets qLa, singlets uRa with
charge 2/3, and singlets dRa with charge −1/3 correspond
to the DLa, νRa, and �Ra, respectively, in the lepton sec-
tor. Moreover, the third term is missing from the Yukawa
Lagrangian in (3).
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Example D

We have

Md ∼

 0 × 0

× × ×
0 × ×


 , Mu ∼


 0 × 0

× × ×
0 × ×


 . (28)

We have taken this texture from [27,28] (see also the ref-
erences therein). Non-symmetric mass matrices are con-
sidered in one of the instances in [27]; using the methods
in the present paper, it is possible neither to achieve sym-
metric mass matrices Mu and Md, nor Hermitian ones like
those in [28]. Using the first method in Sect. 2, since we
want zeros in the same positions of Mu and Md, we take
G (uRa) ≡ G (dRa). The symmetry group G may be chosen
to be the direct product of

Z2 (qL1) ,
Z2 (dR1) ≡ Z2 (uR1) ,
Z2 (qL2) ≡ Z2 (dR2) ≡ Z2 (uR2) ,
Z2 (qL3) ≡ Z2 (dR3) ≡ Z2 (uR3) .

(29)

Then, with four Higgs doublets transforming as

φ12 : Z2 (dR1) ⊗ Z2 (qL2) ,
φ21 : Z2 (dR2) ⊗ Z2 (qL1) ,

φ23 = φ32 : Z2 (dR2) ⊗ Z2 (qL3) ,
φ22 = φ33 : {1},

(30)

where {1} denotes invariance under G, one reproduces the
texture in (28).

If one adopts a variation of the second method in Sect. 2,
one can find a realization of the present texture with only
three Higgs doublets. Using once again a Z8 symmetry, take

d̄R1 → d̄R1, ūR1 → ūR1, qL1 → ζ3qL1,
d̄R2 → ζ6d̄R2, ūR2 → ζ6ūR2, qL2 → ζ qL2,
d̄R3 → ζ3d̄R3, ūR3 → ζ3ūR3, qL3 → ζ6qL3.

(31)

One then needs only three Higgs doublets φ1, φ2, and φ3
transforming with ζ, ζ7, and ζ4 = −1, respectively, in order
to reproduce the texture in (28). The Yukawa coupling
matrices are

Γ1 ∼ ∆2 ∼

 0 × 0

× 0 0
0 0 ×


 , Γ2 ∼ ∆1 ∼


0 0 0

0 × 0
0 0 0


 ,

Γ3 ∼ ∆3 ∼

0 0 0

0 0 ×
0 × 0


 . (32)

4 Goldstone bosons

The Abelian symmetry group G is often so restrictive that
it leads to accidental U(1) symmetries in the scalar poten-
tial. Those U(1) symmetries may either be shared by the
rest of the Lagrangian, or not. Thus, there is the danger
of Goldstone or pseudo-Goldstone bosons. If a Goldstone

boson is a superposition of scalar singlets, or components
thereof, then it is harmless, since it couples only to the
right-handed neutrino singlets [29].

In some cases there are no Goldstone bosons. For in-
stance, if all scalars transform with Z2 groups, like for

instance in example C of Sect. 3, then the terms
(
φ†

iφj

)2

with i �= j are G-invariant and eliminate all the Gold-
stone bosons.

It is always possible to avoid the Goldstone bosons by
breaking G softly in the scalar potential through terms of
dimension two. We simply add to the potential all terms
of the form φ†

iφj with i �= j. The only surviving U(1)
is then associated with hypercharge, and no Goldstone
boson coupling to �̄RaDLb occurs. (If desirable, one may
also eliminate the Goldstone bosons in the scalar-singlet
sector in an analogous way.) For instance, our Z12 × Z2
method and the two examples in Sect. 3 which use the
group G = Z8 need a soft breaking of this type.

We point out that the systematic soft breaking of a sym-
metry through all possible dimension-2 terms is not unusual
in physics; indeed, it is always assumed in supersymmetric
models. We further point out that we are assuming the
soft breaking of G to occur exclusively through dimension-
2 terms, but not through dimension-3 terms; indeed, bare
mass terms mabν̄RaCν̄T

Rb + H.c. might also break G softly,
but we assume them to remain absent, even when G is
softly broken by dimension-2 terms in the scalar potential,
lest the texture of MR be disrupted.

5 Conclusions

In this paper we have suggested flexible, general, and sys-
tematic methods for enforcing zeros in arbitrary entries of
the fermion mass matrices by means of Abelian symme-
tries. Though we have mainly concentrated on the lepton
sector, the methods, as described in Sect. 2, are also ap-
plicable in the quark sector, and in grand unified theories
as well. The general methods do not, however, necessar-
ily lead to the simplest realization of each texture; in this
context, “simple” means either a small Abelian group G, a
small number of scalar multiplets (Higgs doublets and SM
gauge singlets), or a scalar potential with few terms.

Using the lepton sector for definiteness, we have identi-
fied two instances where a simplification of the first method,
in which the Abelian group G is the direct product of three
groups G (DLa), three G (�Ra), and three G (νRa), is possi-
ble. They are the following.
(1) Either M� or MD is diagonal. In this case, we identify
either G (�Ra) or G (νRa), respectively, with G (DLa), for
a = 1, 2, 3, and then G has six Abelian factors instead of
nine. If both M� and MD are diagonal, then we make a
triple identification and we arrive at three factors in G.
(2) The texture zeros in M� and MD are at the same po-
sitions. In that case we identify G (�Ra) with G (νRa) for
a = 1, 2, 3, and use a real representation of G for all the
Higgs doublets.

A third instance, not discussed in this paper, occurs if
one has a grand unified theory; in that case the number
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of matter multiplets is reduced, for instance to three in
SO(10), and consequently the group G is smaller.

There is an alternative method in which G is always
Z12 × Z2. When applying that method, specific textures
may allow for the use of groups Zn with n < 12.

In many cases, simplifications beyond the above pro-
cedures are possible; unfortunately, it is hard to provide
general rules for those simplifications. Still, it is obvious
that, the larger is the number of zeros in the texture, the
smaller will be the number of scalar multiplets needed.

It will often prove necessary to introduce soft breaking
of the Abelian group G in the scalar potential, through
terms of dimension two, in order to avoid dangerous Gold-
stone bosons. Moreover, the models constructed through
our methods will usually display many flavour-changing
neutral Yukawa interactions, since various Higgs doublets
provide the different entries of each mass matrix. Still, as
our models are well defined and protected by symmetries,
these effects are calculable.

In summary, the methods described in this paper al-
low one to embed arbitrary fermion-mass-matrix textures
with texture zeros into renormalizable field theories. This
lends more credibility to this popular way of constraining
the mass matrices. The embedding is not unique, indeed,
there is a large degree of arbitrariness in it. Having chosen
one embedding, it is possible, in principle, to calculate the
radiative corrections to the relations among the masses
and mixing angles which were achieved by assuming tex-
ture zeros.
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